Variational Inference for Image Segmentation

نویسندگان

  • Claudia Blaiotta
  • M. Jorge Cardoso
  • John Ashburner
چکیده

Variational inference techniques are powerful methods for learning probabilistic models and provide significant advantages with respect to maximum likelihood (ML) or maximum a posteriori (MAP) approaches. Nevertheless they have not yet been fully exploited for image processing applications. In this paper we present a variational Bayes (VB) approach for image segmentation. We aim to show that VB provides a framework for generalizing existing segmentation algorithms that rely on an expectation-maximization formulation, while increasing their robustness and computational stability. We also show how optimal model complexity can be automatically determined in a variational setting, as opposed to ML frameworks which are intrinsically prone to overfitting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Embedding Diffusion in Variational Bayes: a Technique for Segmenting Images

In this paper, we discuss how image segmentation can be handled by using Bayesian learning and inference. In particular variational techniques relying on free energy minimization will be introduced. It will be shown how to embed a spatial diffusion process on segmentation labels within the Variational Bayes learning procedure so as to enforce spatial constraints among labels.

متن کامل

Sparse Template-Based variational Image Segmentation

We introduce a variational approach to image segmentation based on sparse coverings of image domains by shape templates. The objective function combines a data term that achieves robustness by tolerating overlapping templates with a regularizer enforcing sparsity. A suitable convex relaxation leads to the variational approach that is amenable to large-scale convex programming. Our approach take...

متن کامل

Scalable Variational Inference in Log-supermodular Models

We consider the problem of approximate Bayesian inference in log-supermodular models. These models encompass regular pairwise MRFs with binary variables, but allow to capture highorder interactions, which are intractable for existing approximate inference techniques such as belief propagation, mean field, and variants. We show that a recently proposed variational approach to inference in log-su...

متن کامل

3D Segmentation in CT Imagery with Conditional Random Fields and Histograms of Oriented Gradients

In this paper we focus on the problem of 3D segmention in volumetric computed tomography imagery to identify organs in the abdomen. We propose and evaluate different models and modeling strategies for 3D segmentation based on traditional Markov Random Fields (MRFs) and their discriminative counterparts known as Conditional Random Fields (CRFs). We also evaluate the utility of features based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015